Skip to main content
padlock icon - secure page this page is secure

Cooperative robotic assistant with drill-by-wire end-effector for spinal fusion surgery

Buy Article:

$40.56 + tax (Refund Policy)

Purpose ‐ The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position control, and improved ergonomics. Design/methodology/approach ‐ A human-guided robot for the spinal fusion surgery has been developed with a dexterous end-effector that is capable of high-speed drilling for cortical layer gimleting and tele-operated insertion of screws into the vertebrae. The end-effector is position-controlled by a five degrees-of-freedom robot body that has a kinematically closed structure to withstand strong reaction force occurring in the surgery. The robot also allows the surgeon to control cooperatively the position and orientation of the end-effector in order to provide maximum flexibility in exploiting his or her expertise. Also incorporated for improved safety is a "drill-by-wire" mechanism wherein a screw is tele-drilled by the surgeon in a mechanically decoupled master/slave system. Finally, a torque-rendering algorithm that adds synthetic open-loop high-frequency components on feedback torque increases the realism of tele-drilling in the screw-by-wire mechanism. Findings ‐ Experimental results indicated that this assistive robot for spinal fusion performs drilling tasks within the static regulation errors less than 0.1?µm for position control and less than 0.05° for orientation control. The users of the tele-drilling reported subjectively that they experienced torque feedback similar to that of direct screw insertion. Research limitations/implications ‐ Although the robotic surgery system itself has been developed, integration with surgery planning and tracking systems is ongoing. Thus, the screw insertion accuracy of a whole surgery system with the assistive robot is to be investigated in the near future. Originality/value ‐ The paper arguably pioneers the dexterous end-effector appropriately designed for spinal fusion, the cooperative robot position-control algorithm, the screw-by-wire mechanism for indirect screw insertion, and the torque-rendering algorithm for more realistic torque feedback. In particular, the system has the potential of circumventing the screw-loosening problem, a common defect in the conventional surgeon-operated or robot-assisted spinal fusion surgery.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Body systems and organs; Bones; Control technology; Robotics; Surgery; Torque

Document Type: Research Article

Publication date: January 9, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more