Skip to main content
padlock icon - secure page this page is secure

Dry sliding of composites with PBT matrix and micro glass beads on steel

Buy Article:

$39.35 + tax (Refund Policy)

Purpose ‐ This research aims to characterize the tribological behavior of polybutylene terephthalate (PBT) and PBT composites with micro glass beads (MGB) on steel, in dry conditions and on a block-on-ring tester, pointing out the influence of sliding distance and speed. The tribology of PBT and its composites is still in an early stage because this thermoplastic polyester requires accurate technological and thermal treatment. Design/methodology/approach ‐ The composites were produced by ICEFS Savinesti Romania and contain PBT grade Crastin6130NC010 (as supplied by Du Pont), 0.5 […] 1.0 per cent (weight) Relamyd B-2Nf (polyamide grade produced by ICEFS, for a better dispersion of MGB), 1 per cent (weight) black carbon for technological and tribological reasons and different micro glass beads (MGB) concentrations (10.0 and 20.0 per cent weight). Tests were done for different sliding distances (2,500, 5,000 and 7,500 m) and speeds (0.5, 1.0 and 1.5 m/s) and a normal load of 5 N. Findings ‐ The friction coefficient and the wear parameter (as mass loss of polymeric blocks) pointed out a good tribological behavior for these composites. Scanning electron microscope (SEM) images revealed particular aspects of PBT local transfer on steel. Also, 10 per cent MGB in PBT reduces wear, especially for longer distances (75,000 m) and higher speeds (0.5 and 0.75 m/s); the friction coefficient is only slightly increased up to 0.23, being less influenced by the speed and the sliding distance as compared to neat polymer. Originality/value ‐ PBT and PBT composites could become challengers for replacing materials in applications similar to tested ones. Even the neat polymer exhibits a good tribological behavior. The composites have a lower sensibility to higher speeds and sliding distances for the applied load.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Block-on-ring; Coefficient of friction; Micro glass beads; PBT; Wear

Document Type: Research Article

Publication date: April 8, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more