
Enhancement of Industrial Hydroformylation Processes by the Adoption of Rhodium-Based Catalyst: Part I
The adoption of a low-pressure rhodium-based catalyst system in place of high-pressure cobalt for the hydroformylation of propylene by reaction with carbon monoxide and hydrogen to produce butyraldehydes (an ‘oxo’reaction) has brought large cost benefits to oxo producers.
The benefits derive from improved feedstock efficiency, lower energy usage and simpler and cheaper plant configurations. The technical and commercial merits of the ‘LP Oxo
SM
Process’ for producing butyraldehydes have made it one of the best known applications
of industrial-scale chemistry using a platinum group metal (pgm). Today, practically all butyraldehyde is made by rhodium catalysis, and this should provide convincing encouragement to researchers who are keen to exploit pgms as catalyst research materials, but are apprehensive as to the implications
of their very high intrinsic value. It should also encourage developers and designers responsible for turning pgm chemistry into commercial processes, who may be daunted by problems such as containment and catalyst life. This article (Part I) reviews the background to the LP Oxo
SM
Process, and its development to the point of first commercialisation. Part II, covering some of the key improvements made to the process and its use in non-propylene applications, will appear in a future issue of Platinum Metals Review.
6 References.
No Supplementary Data.
No Article Media
No Metrics
Document Type: Research Article
Publication date: July 1, 2007
Johnson Matthey's journal of research on the platinum group metals and developments in their application in industry from 1957-2014. It has now been renamed the Johnson Matthey Technology Review
- Editorial Board
- Information for Authors
- Terms & Conditions
- Disclaimer and Copyright Notice
- Ingenta Connect is not responsible for the content or availability of external websites