Skip to main content
padlock icon - secure page this page is secure

Open Access Mechanisms of Volume Diffusion of Gold into Single Crystal Iridium

Download Article:
(HTML 53.2 kb)
(PDF 736 kb)
Iridium crucibles, examined after being used in the extraction of gold and silver from residues remaining after zinc manufacture, showed an anomalously high permeability to substitutional components and impurities, such as gold. To discover the cause of this high permeability, the volume diffusion of gold into nominally pure single crystals of iridium (single-Ir), annealed under ultrahigh and technical grade vacuums, UHV and TGV, respectively, was studied at temperatures from 1300 to 2000 K. The coefficients of volume diffusion of gold into single-Ir were measured by secondary ion mass spectrometry. The activation enthalpies measured for volume diffusion of the gold were: and in UHV and TGV, respectively, for annealing single-Ir. On annealing in TGV, interstitial impurities formed vacancy-impurity complexes (VICs). The binding energy of the VIC components (EVIC)Ir = (116 ± 16) kJ mol ‐1. In TGV, the gold diffusion was determined by ‘extrinsic’ vacancies dissociating from the VICs. At typical working temperatures for iridium the concentration of the ‘extrinsic’ vacancies was several thousand times larger than the concentration of the equilibrium ‘intrinsic’ vacancies. The ‘extrinsic’ vacancies are responsible for the high coefficient of volume diffusion and the corresponding anomalously high mass transfer of gold into iridium during TGV annealing.

30 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more