Skip to main content
padlock icon - secure page this page is secure

Open Access Direct Methanol Fuel Cells

Download Article:
(HTML 39.2 kb)
(PDF 561.6 kb)
Unlike other fuel cell types, the direct methanol fuel cell does not require a separate hydrogen generation system and therefore has greater commercial potential, particularly for powering portable appliances. However, the limiting factor for the cost-effective performance of such systems is the catalytic activity of the electrodes, in particular the anode. The single most active anode material is platinum, which is usually dispersed on a high surface area carbon support. It has been found that the addition of small amounts of metals such as lead, rhenium, ruthenium and tin to the platinum produces a significant increase in activity. The best of these bimetallic systems is based on a mixture of platinum and ruthenium. However, further worthwhile improvements in anode activity could result from a more fundamental understanding of the methanol decomposition reaction. In recognition of this, the Commission of the European Communities has initiated a research programme which involves collaboration between universities and industry in four member states. This article is based largely upon a paper given at the CEC‐Italian Fuel Cell Workshop in Taormina, Sicily, in June 1987.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: October 1, 1987

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more