Skip to main content
padlock icon - secure page this page is secure

Synthesis and characterization of poly(lactic acid) and aliphatic polycarbonate copolymers

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

BACKGROUND: Poly(lactic acid) (PLA) has received much attention as a biodegradable polymer. But the physical properties of PLA, such as brittleness, limit its wider applicability. Copolymerization polymers ing soft blocks provides a useful method to improve the mechanical properties of PLA.

RESULTS: Poly(lactic acid)‐block‐(polycarbonate diol) (PLA‐PCD) copolymers were synthesized using a two‐step process with polycondensation and chain extension reactions. The effect of polycarbonate diol content on the prepolymer properties was studied. The chain‐extended products were characterized using 1H NMR, F and. The effect of the NCO/OH ratio on the properties of the chain‐extended products, including the mechanical properties and thermal properties, was studied. eight‐average molecular weight of the product can reach 210 000 g mol−1 when the molar ratio of —NCO to —OH is 3:1.

CONCLUSION: The PLA‐PCD copolymers obtained can crystallize, and the crystallinity decreases with chain‐extension reaction. The products exhibit superior mechanical properties with elongation at break above 230%, which is much higher than that of PLA chain‐extended products. The products have a good potential for packaging applications. Copyright © 2009 Society of Chemical Industry
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: block copolymers; chain extension; poly(lactic acid); polycarbonate diol; polycondensation

Document Type: Research Article

Publication date: September 1, 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more