Skip to main content
padlock icon - secure page this page is secure

Visualizing phase separation in polystyrene/polystyrene homo‐IPNs via sulfonation

Buy Article:

$59.00 + tax (Refund Policy)

BACKGROUND: Polystyrene/polystyrene (PS/PS) interpenetrating polymer networks (IPNs) represent ideal homo‐IPNs. Whether phase separation occurs in this system has been a long‐standing problem, which is closely related to the self‐organization mechanism in IPN formation and is important to the exploration of new polymer morphologies and properties by topological isomerism.

RESULTS: A series of bead samples of PS/PS sequential IPNs with the same nominal divinylbenzene contents were synthesized by suspension polymerization, followed by sulfonation. Scanning electron micrographs and energy‐dispersive X‐ray mapping show unique distinctive topography on both surfaces and fractured surfaces and large heterogeneity in sulfonation of the PS/PS IPN beads, which for the first time provide visual evidence for dual‐phase continuity in PS/PS IPNs.

CONCLUSION: The phase separation behavior is proposed to be due to hydrodynamic screening, architectural asymmetry and excluded volume interactions between network I and the precursor chains of network II. This is considered to represent pure IPN effects in sequential formation and may shed light on the general constitution mechanism and molecular design of IPN materials. Copyright © 2009 Society of Chemical Industry
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: homo‐IPNs; phase separation; polystyrene; sulfonation

Document Type: Miscellaneous

Publication date: April 1, 2009

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more