Skip to main content
padlock icon - secure page this page is secure

Dual functionality of PTSA as electrolyte and dopant in the electrochemical synthesis of polyaniline, and its effect on electrical properties

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The electrochemical synthesis of polyaniline (PAni) powder was carried out from an aqueous solution of 0.15 mol L−1 aniline with varying concentrations of p‐toluenesulphonic acid (PTSA) at room temperature. The PAni samples thus obtained were characterized using DC and AC conductivity, dielectric properties, infrared spectroscopy, thermogravimetric analysis, X‐ray analysis, scanning electron microscopy and ultraviolet spectroscopy. Results showed that PTSA is acting both as electrolyte and doping agent. With an increase in the PTSA concentration, there is more polaron formation, and this means an increase in charge carrier concentration and mobility. This accounts for the increase in conductivity and improved dielectric properties of the resultant PAni. The polymer was subjected to a heating and cooling cycle. The change in conductivity during the heating cycle is quite different from that during the cooling cycle, indicating some kind of hysteresis phenomenon occurring in the system. Moreover there is a net decrease in room temperature conductivity of PAni when subjected to the heating–cooling cycle. This may be due to the oxidation of PAni and generation of some kind of disorder in the structure of PAni during the heating–cooling process. Copyright © 2007 Society of Chemical Industry
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: conductivity; dielectric properties; electrochemical synthesis; polyaniline

Document Type: Research Article

Publication date: July 1, 2007

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more