Skip to main content
padlock icon - secure page this page is secure

New approaches for modelling cancer mechanisms in the mouse

Buy Article:

$59.00 + tax (Refund Policy)

Mouse models of human cancer are vital to our understanding of the neoplastic process, and to advances in both basic and clinical research. Indeed, models of many of the major human tumours are now available and are subject to constant revision to more faithfully recapitulate human disease. Despite these advances, it is important to recognize that limitations do exist to the current range of models. The principal approach to modelling has relied upon the use of constitutive gene knockouts, which can often result in embryonic lethality, can potentially be affected by developmental compensation, and which do not mimic the sporadic development of a tumour expanding from a single cell in an otherwise normal environment. Furthermore, simple knockouts are usually designed to lead to loss of protein function, whereas a subset of cancer‐causing mutations clearly results in gain of function. These drawbacks are well recognized and this review describes some of the approaches used to address these issues. Key amongst these is the development of conditional alleles that precisely mimic the mutations found in vivo, and which can be spatially and tissue‐specifically controlled using ‘smart’ systems such as the tetracycline system and Cre‐Lox technology. Examples of genes being manipulated in this way include Ki‐Ras, Myc, and p53. These new developments in modelling mean that any mutant allele can potentially be turned on or off, or over‐ or under‐expressed, in any tissue at any stage of the life‐cycle of the mouse. This will no doubt lead to ever more accurate and powerful mouse models to dissect the genetic pathways that lead to cancer. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Ki‐Ras; Myc; Rb; conditional alleles; mouse models of cancer; p53

Document Type: Review Article

Affiliations: School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK

Publication date: January 1, 2005

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more