Skip to main content
padlock icon - secure page this page is secure

Free Content Distinguishing turbulent overturns in high-sampling-rate moored thermistor string observations

Download Article:
 Download
(PDF 24,303.4 kb)
 
Turbulent overturns are distinguished from salinity-compensated intrusions in high-resolution moored thermistor string observations. The buoyancy frequency N is used to make the time dimensionless, "t*." This results in a primary, visual means to easily compare the duration of overturns with N, the natural frequency that separates internal waves from turbulent overturns. As a secondary means, the shapes of overturns are investigated. Above various sloping topography between 500 and 1,000 m water depth where the buoyancy period varies between ∼1,300 and 2,600 s, vertical overturns of ∼40 m last Δt* =0.2–0.4. This corresponds with the timescale of growth of model-stratified turbulence in the wake of a grid. Smaller-scale, weaker-turbulent, shear-induced Kelvin-Helmholtz overturns of ∼5 m are observed to last approximately Δt* = 0.03, whereas the passage of their train of multiple consecutive overturns lasts up to approximately Δt* = 0.95. Although the shape of overturns can distinguish salinity-compensated intrusions from turbulent overturns, the present observations from internal wave breaking above sloping topography show complex results of mixed features.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: DETAILED OCEAN MIXING PARAMETER ESTIMATES; HIGH-RESOLUTION TEMPERATURE OBSERVATIONS; SALINITY-COMPENSATED INTRUSIONS; TURBULENT OVERTURN PATTERNS

Document Type: Research Article

Publication date: January 1, 2015

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more