Skip to main content
padlock icon - secure page this page is secure

Free Content Process-specific cues for recruitment in sedimentary environments: Geochemical signals?

Download Article:
The most biologically and geochemically active marine sediments are characterized by steep chemical gradients within the top centimeters of sediment (Berner, 1980). A common feature of these environments is disruptions of surface sediments by both physical and biotic forces. Growth and mortality rates for new recruits are affected by many of these surface perturbations. At the same time, these disturbances also impose a discontinuity in concentration across the sediment-water interface, and accordingly, a change in surface chemistry. In this paper we present evidence that the cue used by juveniles to distinguish between recently disturbed and undisturbed surfaces may be disruption of geochemical gradients that are typical of nearshore benthic systems. New juveniles exposed to ammonium concentrations typical of disturbed surface sediments exhibit behaviors consistent with rejection of the habitat. Conversely, new juveniles placed onto sediments containing ammonium levels typical of undisturbed surficial sediments rapidly initiate burrowing activity, a sign of "acceptability." We also present a numerical model, which assesses the dynamics of small-scale chemical shifts that accompany sediment disruption, to determine (a) what is the magnitude of surface chemistry changes associated with disturbance (i.e. what is the signal strength)? and (b) what are the spatial and temporal scales associated with the return to the undisturbed condition ("recovery")? Model results show that the signal strength, and the return to "acceptable" conditions, are strongly influenced by the initial gradient. Model predictions of the time required to "recover" indicate that times to recovery are longer than the interval between disturbance events, but are of the same temporal scale (minutes to hours). Thus, our results suggest that the dynamics of surficial gradients provide a strong signal over appropriate time scales that may reveal the intensity of disturbance and the likelihood of mortality for juveniles. As such, transport-reaction processes which govern porewater concentrations in surficial sediments may also play a role in recruitment processes.

68 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 March 1998

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more