Skip to main content
padlock icon - secure page this page is secure

Free Content Enhanced dispersion of near-inertial waves in an idealized geostrophic flow

Download Article:
This paper presents a simplified model of the process through which a geostrophic flow enhances the vertical propagation of near-inertial activity from the mixed layer into the deeper ocean. The geostrophic flow is idealized as steady and barotropic with a sinusoidal dependence on the north-south coordinate; the corresponding streamfunction takes the form  = - Ψ cos (2αy). Near-inertial oscillations are considered in linear theory and disturbances are decomposed into horizontal and vertical normal modes. For this particular flow, the horizontal modes are given in terms of Mathieu functions. The initial-value problem can then be solved by projecting onto this set of normal modes. A detailed solution is presented for the case in which the mixed layer is set into motion as a slab. There is no initial horizontal structure in the model mixed layer; rather, horizontal structure, such as enhanced near-inertial energy in regions of negative vorticity, is impressed on the near-inertial fields by the pre-existing geostrophic flow.

Many details of the solution, such as the rate at which near-inertial activity in the mixed layer decays, are controlled by the nondimensional number, Y = 4 Ψf0/H2mixN2mix, where f0 is the inertial frequency, Hmix is the mixed-layer depth, and Nmix is the buoyancy frequency immediately below the base of the mixed layer. When Y is large, near-inertial activity in the mixed layer decays on a time-scale HmixNmix2Ψ3/2f01/2. When Y is small, near-inertial activity in the mixed layer decays on a time-scale proportional to N2mixH2mix2Ψ2f0.

15 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 1998

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more