Skip to main content
padlock icon - secure page this page is secure

Experimental Techniques for Retrieving Flow Information from within Inkjet Nozzles

Buy Article:

$22.00 + tax (Refund Policy)


In drop-on-demand (DOD) inkjet printing microdroplets are ejected from the nozzle as a result of the internal acoustics set in motion by a pressure pulse from an expanding bubble or a piezoelement. The acoustic response, both in the frequency domain and in the time domain, and the resulting droplet formation processes are well-modeled and characterized by various experimental techniques. However, the behavior of the liquid meniscus in the nozzle is a critical mediator between these regimes and poorly accessible in experiment. The meniscus shape and motion vary between different print head designs, electrical pulse shapes and wetting conditions. In the last decade several novel approaches have been proposed and implemented to study experimentally the meniscus motion within inkjet nozzles. These experimental methods are reviewed here and compared in terms of accuracy and applicability.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2016

This article was made available online on May 18, 2016 as a Fast Track article with title: "Experimental Techniques for Retrieving Flow Information from within Inkjet Nozzles".

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Information for JIST-First Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more