Skip to main content
padlock icon - secure page this page is secure

Open Access Gravure Printed Ultrathin Layers of Small-Molecule Semiconductors on Glass

Download Article:
(PDF 3,600 kb)
The authors present the feasibility of sheet fed direct gravure printing for ultrathin, organic semiconductor films on ITO coated glass. Printing with chrome plated gravure cylinders is often believed to require flexible substrates to promote fluid transfer to the substrate. However, the results demonstrate a stable process for the small-molecule Spiro-MeOTAD dissolved in toluene on rigid substrates. The authors obtained layer thicknesses in the range of 5–100 nm. They identified certain boundaries for gravure cell size yielding printed films with thickness of 10–15 nm with good homogeneity suitable for organic light emitting diodes or organic photovoltaics. For gravure cells smaller or larger than the optimal range, the printed layer is afflicted with dot- or ribbinglike structures. The authors show that the latter may result from nip-induced Saffman–Taylor instabilities rather than spinodal dewetting or Marangoni effects. Finally, electrical characterization of a completed stack (PEDOT:PSS electrode) give evidence for integrity of the printed semiconductor layers.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Institute of Printing Science and Technology, Universität Darmstadt, Magdalenenstraße 2, 64289 Darmstadt, Germany. [email protected] 2: Institute of Printing Science and Technology, Universität Darmstadt, Magdalenenstraße 2, 64289 Darmstadt, Germany

Publication date: July 1, 2011

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Information for JIST-First Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more