Skip to main content
padlock icon - secure page this page is secure

Open Access Distance Measures in the Training Phase of Self-Organizing Map for Color Histogram Generation in Spectral Image Retrieval

Download Article:
(PDF 1,548.2 kb)
The usefulness of different distance measures in the training phase of self-organizing map (SOM) for color histogram generation for spectral image retrieval purposes is examined. The calculation of the best-matching unit (BMU) in the training phase of SOM is done by using Euclidean distance, Kullback–Leibler distance, Jeffrey divergence, and CIEL*a*b* color difference as distance measures. One-dimensional SOMs are generated for two different data sets consisting of 1269 Munsell color chips and 1, 440, 000 color spectra collected from a real spectral image database. The suitability of the introduced measures is first evaluated by calculating the average color differences between the Munsell data set and its BMUs in the SOMs trained by Munsell data. The achieved results are validated by a practical application, in which the queries from a real spectral image database are performed. Furthermore, the ability of SOMs trained by different distance measures to distinguish between spectral images of real human skin and magazine prints of human skin is examined. The achieved results are promising and indicate that two-dimensional self-organizing maps, which are trained by using Euclidean distance and Jeffrey divergence as distance measure and color histograms that correspond the spectral images as training data, could be used for classifying spectral images.

9 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Computer Science and Statistics, University of Joensuu, 80101 Joensuu, Finland

Publication date: March 1, 2008

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Information for JIST-First Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more