Skip to main content
padlock icon - secure page this page is secure

Quantum-Sized Silver, Silver Chloride and Silver Sulfide Clusters

Buy Article:

$22.00 + tax (Refund Policy)

Thin AgCl layers photocatalytically oxidize water to O2 under appropriate conditions. The photoactivity of AgCl extends from the UV into the visible light region in a process known as self-sensitization, which is due to the formation of silver during the photoreaction. This silver can be almost quantitatively reoxidized electrochemically, making it feasible that a thin AgCl layer deposited on a conducting substrate can be used as a photoanode for water splitting if coupled with an appropriate photocathode. The silver chloride/silver cluster phase boundary plays a decisive role in the photocatalytic silver chloride electrode system. We have therefore studied this interphase by means of quantum chemical calculations from which we report first results, specifically for the (Ag)115(AgCl)192 composite. Clusters of semiconducting materials are interesting considering their application as a photocathode in such a device. In this context, we also report the synthesis and properties of luminescent quantum-sized silver sulfide clusters in the cavities of zeolite A. The color of the silver sulfide zeolite A composites ranges from colorless (low loading) to yellow–green (medium loading) to brown (high loading). A low silver sulfide content is characterized by a blue–green luminescence and distinct absorption bands, while samples with medium or high silver sulfide content show an orange or red colored emission and a continuous absorption.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2001

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Information for JIST-First Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more