Skip to main content
padlock icon - secure page this page is secure

Open Access Autocorrelation-based, passive, non-contact, photoplethysmography: Computationally-efficient, noise-tolerant, extraction of heart rates from video

Download Article:
 Download
(PDF 5,910.6 kb)
 
Photoplethysmography (PPG) is the detection of blood flow or pressure by optical means. The most common method involves direct skin-contact measurement of light from an LED. However, the small color changes in skin under normal lighting conditions, as recorded by conventional video, potentially allow passive, noncontact, PPG. Eulerian Video Magnification (EVM) was used to demonstrate that small color changes in a subject’s face can be amplified to make them visible to a human observer. A variety of methods have been applied to extract heart rate from video.

The signal obtained by PPG is not a simple sinusoid, but has a relatively complex structure, which in video is degraded by ambient lighting variations, motion, noise, and a low sampling rate. Although EVM and many other analysis methods in the literature essentially operate in the frequency domain, fitting the video data to their model requires extensive preprocessing. In this paper a time-based autocorrelation method is applied directly to the video signal that exhibits superior noise rejection and resolution for detecting quasi-periodic waveforms. The method described in the current work avoids both the preprocessing computational cost and the potential signal distortions.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Autocorrelation; Eulerian Video Magnification; Heart rate; Photoplethysmography; Signal Processing; Video Feature Extraction

Document Type: Research Article

Publication date: January 13, 2019

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more