Skip to main content
padlock icon - secure page this page is secure

Open Access Visualizing Mathematical Knot Equivalence

Download Article:
(PDF 2,401.8 kb)
We present a computer interface to visualize and interact with mathematical knots, i.e., the embeddings of closed circles in 3-dimensional Euclidean space. Mathematical knots are slightly different than everyday knots in that they are infinitely stretchy and flexible when being deformed into their topological equivalence. In this work, we design a visualization interface to depict mathematical knots as closed node-link diagrams with energies charged at each node, so that highly-tangled knots can evolve by themselves from high-energy states to minimal (or lower) energy states. With a family of interactive methods and supplementary user interface elements, out tool allows one to sketch, edit, and experiment with mathematical knots, and observe their topological evolution towards optimal embeddings. In addition, out interface can extract from the entire knot evolution those key moments where successive terms in the sequence differ by critical change; this provides a clear and intuitive way to understand and trace mathematical evolution with a minimal number of visual frames. Finally out interface is adapted and extended to support the depiction of mathematical links and braids, whose mathematical concepts and interactions are just similar to our intuition about knots. All these combine to show a mathematically rich interface to help us explore and understand a family of fundamental geometric and topological problems.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Knot Theory; Mathematical Visualization; Topology and Geometry

Document Type: Research Article

Publication date: January 13, 2019

This article was made available online on January 13, 2019 as a Fast Track article with title: "Visualizing mathematical knot equivalence".

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more