Skip to main content
padlock icon - secure page this page is secure

Open Access Free-Space Detection with Self-Supervised and Online Trained Fully Convolutional Networks

Download Article:
(PDF 2,473 kb)
Recently, vision-based Advanced Driver Assist Systems have gained broad interest. In this work, we investigate free-space detection, for which we propose to employ a Fully Convolutional Network (FCN). We show that this FCN can be trained in a selfsupervised manner and achieve similar results compared to training on manually annotated data, thereby reducing the need for large manually annotated training sets. To this end, our selfsupervised training relies on a stereo-vision disparity system, to automatically generate (weak) training labels for the color-based FCN. Additionally, our self-supervised training facilitates online training of the FCN instead of offline. Consequently, given that the applied FCN is relatively small, the free-space analysis becomes highly adaptive to any traffic scene that the vehicle encounters. We have validated our algorithm using publicly available data and on a new challenging benchmark dataset that is released with this paper. Experiments show that the online training boosts performance with 5% when compared to offline training, both for Fmax and AP.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: January 29, 2017

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more