Skip to main content
padlock icon - secure page this page is secure

Open Access BRDF Interpolation using Anisotropic Stencils

Download Article:
 Download
(PDF 3,921.6 kb)
 
Fast and reliable measurement of material appearance is crucial for many applications ranging from virtual prototyping to visual quality control. The most common appearance representation is BRDF capturing illumination- and viewing-dependent reflectance. One of the approaches to rapid BRDF measurement captures its subspace, using so called slices, by continuous movements of a light and camera in azimuthal directions, while their elevations remain fixed. This records set of slices in the BRDF space while remaining data are unknown. We present a novel approach to BRDF reconstruction based on a concept of anisotropic stencils interpolating values along predicted locations of anisotropic highlights. Our method marks an improvement over the original linear interpolation method, and thus we ascertain it to be a promising variant of interpolation from such sparse yet very effective measurements.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 15, 2016

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more