Skip to main content
padlock icon - secure page this page is secure

Extreme Spectral Power Distribution of Light Source and its Impact to Vision and Cameras Sensitivity

Buy Article:

$17.00 + tax (Refund Policy)

Thanks to the advancement of technologies, we may be having more flexibility to determine the spectral power distribution (SPD) of light sources. Suppose any SPD is possible, we derive “extreme SPD of light source” aiming at a specific purpose such as the lowest energy, the largest color gamut, the lowest impact to fine arts, etc. We found that these SPDs always consist of multiple spikes when very high CRI is not required while the SPD of the black body radiation is continuous in wavelength. In order to investigate the effect of such light sources to human visual system and camera system, we employ two types of such light sources, namely Maximum White Luminous Efficacy of Radiation (MWLER), which gives the best energy efficiency, and Maximum Gamut Area (MGA), which gives the largest color gamut size. Both MWLER and MGA are composed of multiple spikes in wavelength. We generate such SPDs with respect to 6 types of existing light sources with same CCT and CRI (if applicable), and evaluate how sensitive these are with 10 sets of color matching functions (CMFs) given by Stiles and Burch as human visual system and 4 sets of digital camera sensitivities by computer simulation. We presume a color matrix of color conversion for CMFs and camera is adjusted minimizing errors with a Macbeth Color Checker under black body radiation with the white point constraint. With this assumption, we evaluate colorimetric error under the two extreme SPDs in addition to black body radiation and existing light sources. We find that cameras give large error (more than 20 in ΔE*ab) for these spiky light sources which may not be accepted by users even when they are in a tolerable error range for the human visual system. It is concluded that such spiky light source could be used without problem for a variation of CMFs, but it would be problematic for color reproduction of cameras.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2013

More about this publication?
  • CIC is the premier annual technical gathering for scientists, technologists, and engineers working in the areas of color science and systems, and their application to color imaging. Participants represent disciplines ranging from psychophysics, optical physics, image processing, color science to graphic arts, systems engineering, and hardware and software development. While a broad mix of professional interests is the hallmark of these conferences, the focus is color. CICs traditionally offer two days of short courses followed by three days of technical sessions that include three keynotes, an evening lecture, a vibrant interactive (poster) papers session, and workshops. An endearing symbol of the meeting is the Cactus Award, given each year to the author(s) of the best interactive paper; there are also Best Paper and Best Student Paper awards.

    Please note: for Purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more