Skip to main content
padlock icon - secure page this page is secure

Classification-driven stochastic watershed. Application to multispectral segmentation

Buy Article:

$17.00 + tax (Refund Policy)

The aim of this paper is to present a general methodology based on multispectral mathematical morphology in order to segment multispectral images. The methods consists in computing a probability density function pdf of contours conditioned by a spectral classification. The pdf is conditioned through regionalized random balls markers thanks to a new algorithm. Therefore the pdf contains spatial and spectral information. Finally, the pdf is segmented by a watershed with seeds (i.e. markers) coming from the classification.

Consequently, a complete method, based on a classification-driven stochastic watershed is introduced. This approach requires a unique and robust parameter: the number of classes which is the same for similar images.

Moreover, an efficient way to select factor axes, of Factor Correspondence Analysis (FCA), based on signal to noise ratio on factor pixels is presented.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2008

More about this publication?
  • Started in 2002 and merged with the Color and Imaging Conference (CIC) in 2014, CGIV covered a wide range of topics related to colour and visual information, including color science, computational color, color in computer graphics, color reproduction, volor vision/psychophysics, color image quality, color image processing, and multispectral color science. Drawing papers from researchers, scientists, and engineers worldwide, DGIV offered attendees a unique experience to share with colleagues in industry and academic, and on national and international standards committees. Held every year in Europe, DGIV papers were more academic in their focus and had high student participation rates.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual papers for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more