Skip to main content
padlock icon - secure page this page is secure

A new method for Gaussian noise reduction in colour images by colour morphology

Buy Article:

$17.00 + tax (Refund Policy)

This paper deals with the use of morphological filters by reconstruction of the mathematical morphology for Gaussian noise removal in color images. These new vector connected have the property of suppressing details preserving the contours of the objects. For the extension of the mathematical morphology to color images we chose a new polar color space, the l1-norme. This color model guarantees the formation of the complete lattice necessary in mathematical morphology avoiding the drawbacks of others polar spaces. Finally, after having defined the vectorial geodesic operators, the opening and closing by reconstruction are then employed for the Gaussian noise elimination.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2006

More about this publication?
  • Started in 2002 and merged with the Color and Imaging Conference (CIC) in 2014, CGIV covered a wide range of topics related to colour and visual information, including color science, computational color, color in computer graphics, color reproduction, volor vision/psychophysics, color image quality, color image processing, and multispectral color science. Drawing papers from researchers, scientists, and engineers worldwide, DGIV offered attendees a unique experience to share with colleagues in industry and academic, and on national and international standards committees. Held every year in Europe, DGIV papers were more academic in their focus and had high student participation rates.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual papers for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more