Skip to main content

Analysis of Combustion Noise Sources Using Doak's Momentum Potential Theory

Buy Article:

$15.00 + tax (Refund Policy)

Noise emissions of modern lean combustors are related to different sources. Direct combustion noise is generated by heat release fluctuations, while indirect noise sources include the acceleration of entropy and vorticity inhomogeneities through the nozzle-guide-vane or at the combustor exit. The latter noise source is characterized by the coupling of fluctuations convected in non-uniform mean flow, which can e.g. cause vortical or entropic fluctuations to be partly transferred into acoustics. Due to the complexity of the sources, a clear and quantitative separation of the different phenomena in terms of primitive variables presents a significant challenge. This study therefore proposes an alternative framework for the description of combustion noise based on Doak's Momentum Potential Theory (MPT). The MPT defines a Generalized Acoustic Field (GAF) and describes the sound production in terms of mean energy fluxes carried by the respective acoustic, thermal and turbulent fluctuating momentum components. To confirm the ability to identify the different combustion noise sources, the method was applied to Large-Eddy Simulation data of a non-reacting swirl-combustor simulator. Finally, the coherent character and spectral behavior of the GAF were investigated using a Spectral Proper Orthogonal Decomposition (SPOD) analysis and correlated to the source distributions.

Document Type: Research Article

Affiliations: German Aerospace Center (DLR), Institute of Propulsion Technology - Dep. Engine Acoustics

Publication date: February 1, 2023

More about this publication?
  • The INTER-NOISE and NOISE-CON congress and conference proceedings is a collection of the presented papers. The papers are not peer reviewed and usually represent a synopsis of the material presented at the congress or conference.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content