
Broadband noise mitigation using coupled Helmholtz resonators: a numerical study
In this work we investigate a periodic structure in the frequency range from 20 Hz to 5500 Hz designed for broadband noise insulation. The considered unit cell consists of a simple structure: a pair of polymer pipes with slits carved along the axes, representing two coupled Helmholtz resonators. In order to develop a design with a broad band gap, we analyze the eigenmodes of the infinite two-dimensional structure considering their symmetry and interaction. This analysis is supported by parametric optimization of the resonator geometry. The obtained band diagram is compared with numerically determined transmission coefficient of a finite structure based on the same unit cell. The number of unit cells of the finite structure is chosen to be sufficient for demonstration of insulating properties and stop band formation. Furthermore, we analyze how the transmission coefficient is linked to the pressure field distribution inside the resonators. Owing to the simplicity of the geometry, the obtained results may become a basis for development of budget-friendly passive systems for broadband noise insulation within the audible range of frequencies.
Document Type: Research Article
Publication date: August 1, 2021
The INTER-NOISE and NOISE-CON congress and conference proceedings is a collection of the presented papers. The papers are not peer reviewed and usually represent a synopsis of the material presented at the congress or conference.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content