Skip to main content
padlock icon - secure page this page is secure

COMSOL Model of an Enclosed Coaxial Carbon Nanotube (CNT) Speaker with Perforate Analysis

Buy Article:

$15.00 + tax (Refund Policy)

Carbon nanotube (CNT) speakers are thin film, flexible, light weight, and acoustically transparent that operate on the thermoacoustic principle. Rapid oscillations in the surface temperature result in density variations in the surrounding medium resulting in generation of pressure waves or sound. High operating temperatures, light weight and flexibility to conform to any shape makes them suitable for active exhaust noise cancellation in automobiles. Previous work was done to simulate an enclosed coaxial CNT speaker using COMSOL Multiphysics using a 2D axisymmetric model. The simulated sound pressure values were compared with the measured values to validate the model. This paper builds on the previous work by simulating a 3D model of the coaxial speaker in COMSOL Multiphysics. 3D model allows better modeling of flow and thermal behavior of the coaxial CNT speaker. Comparison is made between the measured and simulated sound pressure levels. Along with this, CFD analysis of perforate pattern on the speaker pipe is also discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Michigan Technological University

Publication date: October 3, 2019

More about this publication?
  • The INTER-NOISE and NOISE-CON congress and conference proceedings is a collection of the presented papers. The papers are not peer reviewed and usually represent a synopsis of the material presented at the congress or conference.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more