Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment

E. Yenilmez¹, E. Başaran¹, R. Arslan², M. S. Berkman¹, U. M. Güven¹, C. Bayçu³, Y. Yazan¹

Department of Histology¹, Osmangazi University, Faculty of Medicine, Eskişehir, Turkey

Department of Pharmaceutical Technology¹, Department of Pharmacology², Anadolu University, Faculty of Pharmacy; Department of Histology³, Osmangazi University, Faculty of Medicine, Eskişehir, Turkey

In the present study chitosan based gel formulations containing Egg Yolk Oil (EYO) and Epidermal Growth Factor (EGF) were formulated successfully aiming at enhanced topical treatment of dermal burns the combination of traditional approaches with modern drug delivery systems. Physicochemical properties of the formulations were analyzed and efficacy of the formulations prepared were evaluated versus a commercial product; Silverdin® (1% silver sulfadiazine) in vivo on Wistar rats. Burns were generated on the back of the rats and at predetermined time intervals tissue samples were collected and evaluated histologically. The analyses showed that chitosan based gel formulations containing Egg Yolk Oil (E1) and chitosan based gel formulations containing EYO and EGF (M1) formulations seem to be better alternatives for Silverdin® with a significant difference (p<0.05) considering healing ranks of tissue samples.

1. Introduction

Burned skin requires particular care like being subject to slings and arrows, which can span from denaturation of skin’s proteins to coagulative necrosis depending on the burn depth degree (Vujanovic and Vujanovic 2013). In burn treatment whether and to what degree the patient is enabled to enjoy a normal quality of life becomes more and more essential in how the outcome of the treatment is evaluated (Haslik et al. 2007). There are many approaches in burn wound healing both biologic and non-biologic originated (Selig et al. 2012). Most preferred approaches are the delivery of epidermal autografts (Cirodde et al. 2011; Wang et al. 2014), allografts (Cleland et al. 2011; Lin et al. 2013). It was reported that simulation of the migration of polymorphonuclear as well as mononuclear cells and acceleration of the re-epithelization and normal skin regeneration is the mechanism of action of chitosan in tissue engineering (Fouda et al. 2009). Local treatment revealed the use of many traditional approaches like the use of herbal mixtures, oils, honey, egg yolk and egg yolk oil (EYO) (Vujanovic and Vujanovic 2013; Kopp et al. 2003; Albery et al. 2006; Rastegar et al. 2011; Sadeghi Bazargani et al. 2013). Among these approaches the efficacy of EYO was scientifically documented (Rastegar et al. 2011; Mahmoudi et al. 2013).

Epidermal growth factor (EGF) is a mitogenic peptide that is secreted into the lumen of the duodenum by Brunner’s glands. EGF is implicated in the regulation of a wide variety of physiological processes, including growth, cell proliferation, regeneration, differentiation, and wound repair (Yildirim et al. 2012; Arti-Prinnci and Bolkent 2014; Jin et al. 2013). EGF stimulates messenger RNA, DNA, and protein synthesis in many cell types and has also been also shown to stimulate keratinocyte division in vitro and epidermal regeneration in vivo (Jabovic et al. 2004).

In the present study chitosan based gel formulations containing EYO and EGF were formulated for the enhanced topical application of natural polymers with different mechanical, physical and biological properties as wound dressings has been widely studied based on the many advantages of these macromolecular agents to simulate the extracellular matrix regeneration after injury (Dantas et al. 2011; Moura et al. 2014). One of the most preferred naturally based polymers for wound healing applications is chitosan (Moura et al. 2014; Mi et al. 2003; Aoyagi et al. 2007; Ji et al. 2012). Chitosan, α-(1-4)-2-amino-2-deoxy β-D-glucan, is a deacetylated form of chitin, an abundant polysaccharide present in crustacean shells (Hamidi et al. 2008). Chitosan has prerequisite distinctive properties such as biocompatibility, biodegradability with non-irritant and non-toxic character which make it an attractive candidate for pharmaceutical and biomedical applications (Dantas et al. 2011; Tsao et al. 2011; Başaran and Yazan 2012). Good hemostatic properties and intrinsic antibacterial characters as well as unique tissue-adhesive properties due to its polycationic nature, makes the wound dressing one of the most promising medical applications for chitosan (Aoyagi et al. 2007; Hoemann et al. 2005, Jayakumar et al. 2011, Lin et al. 2013). It was reported that simulation of the migration of polymorphonuclear as well as mononuclear cells and acceleration of the re-epithelization and normal skin regeneration is the mechanism of action of chitosan in tissue engineering (Fouda et al. 2009). Local treatment revealed the use of many traditional approaches like the use of herbal mixtures, oils, honey, egg yolk and egg yolk oil (EYO) (Vujanovic and Vujanovic 2013; Kopp et al. 2003; Albery et al. 2006; Rastegar et al. 2011; Sadeghi Bazargani et al. 2013). Among these approaches the efficacy of EYO was scientifically documented (Rastegar et al. 2011; Mahmoudi et al. 2013).
treatment of dermal burns. Physicochemical properties of the formulations were analyzed and efficacy of the formulations prepared were evaluated versus the commercial product Silverdin® (1% silver sulfadiazine) with in vivo studies.

2. Investigations and results

2.1. In vitro analyses

Chitosan gel formulations (F1, F2, F3 and F4) were prepared successfully and the formulations were kept at 4 different conditions (25 ± 1 °C, 4 ± 1 °C, 40 ± 1 °C and 40 ± 1 °C + 60% RH) for better evaluation of the stability of the chitosan gel during the storage period of 6 months. Stability of the gel formulations were evaluated due to the changes in pH values and the results showed that differences in pH values of the formulations (Table 1). Among the 4 formulations prepared, initial pH value of F1 formulation second to be unchanged (Table 1). Therefore gel composition of F1 was selected for further in vivo studies. EYO was added to F1 in a final concentration of 100 μg·mL⁻¹ containing EYO and EGF, E1: Formulation containing EYO;* significant difference from the control; **p < 0.01, ***p < 0.001: significant difference from the Silverdin®, bbp < 0.01, bbbp < 0.001: significant difference from the Chitosan gel. The statistical analyses were performed by two-way ANOVA, followed by Tukey’s multiple comparison tests.

Changes in pH values were monitored (Table 1) and the rheological analyses were conducted on E1 and M1 formulations during the storage period of 3 months (Table 2).

2.2. Wound healing

Burn was created by using hot stamp (150 mm diameter, 30 g) at 85 °C for 20 s and the wound healing efficacy of the formulations were assessed by measuring the diameter of the wound by a digital caliper. Progressive changes in burn areas were observed at the 1st, 7th and 21st days of treatment. Wound contraction analyses results shown in Fig. 1.

For all the formulations applied, no significant wound contraction was observed at the 1st and 7th days of treatment however, EYO, E1 and M1 showed significant wound contraction data in comparison with Silverdin®, as well as placebo chitosan gel group and control group (no treatment applied) especially after treatment of dermal burns. Physicochemical properties of the formulations were analyzed and efficacy of the formulations prepared were evaluated versus the commercial product Silverdin® (1% silver sulfadiazine) with in vivo studies.

Table 1: Changes in pH values of the gel formulations prepared during the storage period of 6 months (mean ± SE; RH = relative humidity)

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>Storage Day</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>E1</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5.53 ± 0.05</td>
<td>5.46 ± 0.01</td>
<td>5.41 ± 0.01</td>
<td>5.32 ± 0.05</td>
<td>5.25 ± 0.01</td>
<td>5.28 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>25 ± 1 °C</td>
<td>5.55 ± 0.01</td>
<td>5.44 ± 0.02</td>
<td>5.43 ± 0.02</td>
<td>5.38 ± 0.02</td>
<td>5.25 ± 0.01</td>
<td>5.27 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.56 ± 0.01</td>
<td>5.46 ± 0.01</td>
<td>5.45 ± 0.05</td>
<td>5.33 ± 0.02</td>
<td>5.26 ± 0.03</td>
<td>5.28 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>4 ± 1 °C</td>
<td>5.53 ± 0.01</td>
<td>5.46 ± 0.00</td>
<td>5.41 ± 0.01</td>
<td>5.32 ± 0.00</td>
<td>5.29 ± 0.01</td>
<td>5.21 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>5.53 ± 0.03</td>
<td>5.46 ± 0.00</td>
<td>5.41 ± 0.00</td>
<td>5.32 ± 0.01</td>
<td>5.27 ± 0.01</td>
<td>5.27 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>5.41 ± 0.01</td>
<td>5.46 ± 0.00</td>
<td>5.46 ± 0.01</td>
<td>5.38 ± 0.01</td>
<td>5.36 ± 0.01</td>
<td>5.27 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.52 ± 0.02</td>
<td>5.45 ± 0.01</td>
<td>5.41 ± 0.02</td>
<td>5.36 ± 0.02</td>
<td>5.30 ± 0.01</td>
<td>5.25 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>5.50 ± 0.01</td>
<td>5.44 ± 0.02</td>
<td>5.41 ± 0.02</td>
<td>5.38 ± 0.01</td>
<td>5.36 ± 0.01</td>
<td>5.27 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>5.41 ± 0.01</td>
<td>5.46 ± 0.03</td>
<td>5.46 ± 0.01</td>
<td>5.44 ± 0.01</td>
<td>5.38 ± 0.01</td>
<td>5.20 ± 0.01</td>
<td>5.23 ± 0.00</td>
</tr>
</tbody>
</table>

Table 2: Rheological analyses of the E1 and M1 formulations during the storage period of 3 months (RH = relative humidity)

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>Storage Day</th>
<th>E1</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8296</td>
<td>7912</td>
<td></td>
</tr>
<tr>
<td>25 ± 1 °C</td>
<td>8296</td>
<td>7906</td>
<td></td>
</tr>
<tr>
<td>4 ± 1 °C</td>
<td>8376</td>
<td>7915</td>
<td></td>
</tr>
<tr>
<td>40 ± 1 °C</td>
<td>8324</td>
<td>7955</td>
<td></td>
</tr>
<tr>
<td>40 ± 1 °C 60% RH</td>
<td>8267</td>
<td>7905</td>
<td></td>
</tr>
<tr>
<td>40 ± 1 °C 60% RH</td>
<td>8279</td>
<td>8101</td>
<td></td>
</tr>
<tr>
<td>40 ± 1 °C 60% RH</td>
<td>8267</td>
<td>7905</td>
<td></td>
</tr>
<tr>
<td>40 ± 1 °C 60% RH</td>
<td>8273</td>
<td>7906</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: Wound contraction analyses of the formulations applied (Control: No treatment applied, Chitosan: Placebo chitosan gel, Silverdin®: Commercial product of 1% Silver Sulfadiazine; EYO: Egg yolk oil, E1: Formulation containing EYO and EGF, E3: Formulation containing EYO, *p < 0.05, **p < 0.01, ***p < 0.001: significant difference from the control, aaap < 0.001: significant difference from the Silverdin®, bbp < 0.01, bbbp < 0.001: significant difference from the Chitosan gel. The statistical analyses were performed by two-way ANOVA, followed by Tukey’s multiple comparison tests.

Pharmazie 70 (2015)
14 days. Dramatic changes in wound contraction were recorded at the 21st day in favor of EYO, E1 and M1 formulations (Fig. 1). Digital images of the burn wounds were taken at 1st, 7th, 14th and 21st days (Fig. 2). And healing effect of EYO, E1 and M1 formulations were very apparent especially at the 21st day of treatment in comparison with both placebo chitosan gel formulation and Silverdin® (Fig. 2).

2.3. Histological examination

Histological examinations showed that, in the micrographs of the control group (no treatment applied) severe demages in the excised wound sites were detected after 7 days. Separation between epidermis and dermis was very obvious and integrity of the skin was impaired due to the loss of papillary. Inflammation was very dense at and under the burned area (Fig. 3a). Minimal formation of granulation tissue as well as re-epithelialization and formation of collagen fibres were observed after 14 days (Fig. 3b). And at the 21st day, re-epithelialization was not completed and the granulation tissue and collagen fibres were detected (Fig. 3c).

For placebo chitosan gel after 7 days of treatment, impaired histological structure of the skin and dense inflammation cells were observed (Fig. 3d). At the 14th day, impaired structure was not healed totally however minimal formation of granulation tissue and re-epithelialization were observed (Fig. 3e).
and after 21 days, enhanced collagen formation and slight re-epithelialization was seen (Fig. 3e).

Impaired tissue layers and inflammation cells due to the burn damage can easily be distinguished at the 7th day of treatment with E1 formulation (Chitosan gel containing EYO) (Fig. 3g). After 14 days, formation of granulation tissue and collagen fibres were very obvious. Incomplete re-epithelialization was also detected (Fig. 3h) however at the 21st day, surprisingly epithelialization was nearly completed and formation of new vein as well as the formation of collagen fibres were detected between the layers (Fig. 3i).

In the EYO group, impaired tissue layers and inflammation cells due to the burn damage were detected at the 7th day (Fig. 3j) and after 14 days, formation of granulation tissue and collagen fibres were very obvious. Incomplete re-epithelialization was also detected (Fig. 3k). Surprisingly at the 21st day, epithelialization was nearly completed and new vein formation with the formation of collagen fibres were detected between the layers (Fig. 3l).

After treatment with M1 formulation, impaired tissue and loss of papillary as well as dense inflammation cells were present in the excised wound site sample (Fig. 3m). At the 14th day, formation of granulation tissue was not completed however re-epithelialization was seen (Fig. 3n). After 21 days of the treatment, formation of epidermis was nearly completed and granulation tissue was remarkable (Fig. 3o).

In the Silverdin® group, after treatment for 7 days, highly damaged and intensely inflammed tissue was observed (Fig. 3p). After 14 days, the damage was still obvious however formation of granulation tissue and incomplete re-epithelialization was seen (Fig. 3q). And at the 21st day, formation of the granulation tissue and increased collagen fibre formation was evident as well as incomplete epithelialization (Fig. 3r).

2.4. Wound healing score

Comparison of histological scores between different groups was carried out by Kruskal-Wallis Variance Analysis and Mann-Whitney U Test with a Bonferroni Correction as mentioned before and the data are shown in Fig. 4.

3. Discussion

Gel formulations were evaluated depending on their pH and rheological changes during the storage period of 6 months. Placebo formulations (F1, F2, F3 and F4) gained pH values from 5.32 ± 0.05 to 5.53 ± 0.05 at the day of formulation (Table 1). Current literature indicates that the skin surface pH is mostly acidic between 5.4 and 5.9, therefore no pH adjustment was required for the formulations prepared (Ansari 2009). Small changes in pH values were detected during the storage period of 6 months for F1 formulation compared to other formulations prepared therefore F1 was selected as a key formulation for further studies. EYO and EGF was incorporated into F1 formulations with the concentrations of 100 μg mL⁻¹ (E1) and 10 μg mL⁻¹ (combination with 100 μg mL⁻¹ EGF; M1) (Alemdaroğlu et al. 2006) respectively. pH data of the E1 and M1 formulations were also monitored and during the storage period no significant changes were detected for both formulations without being affected from storage conditions (Table 1).

Rheological analyses also showed the stability of the E1 and M1 formulations with no significant changes in the rheological values by remaining unaffected from storage conditions during the storage period of 3 months (Table 2). Burn patients need special and immediate care due to the severity, pain and discomfort of the situation therefore many attempts were developed as prehospital care like the use of herbal mixtures, oils, honey, EYO for the treatment of dermal burns Kopp et al. 2003; Albertyn et al. 2006; Rastegar et al. 2011; Sadeghi Bazargani et al. 2013) and among these approaches efficacy of
It was reported that silver sulfadiazine delays the wound-healing process Atiyeh et al. 2007 and also in our study epithelialisation could not be completed even at the 21st day of treatment of the (Fig. 3).

Histological scoring also supported the data by showing significant differences (p < 0.001) in skin regeneration for EYO, E1 and M1 formulations at the 21st day of treatment (Fig. 4). It can be concluded that EYO, E1 and M1 formulations had a major impact on tissue regeneration in burn wound healing process.

4. Experimental

4.1. Materials

Glacial acetic acid and human epidermal growth factor (EGF) was purchased from Sigma-Aldrich®, (St. Louis, USA). Chitosan (Highly viscous, 2-amino-2-deoxy-D-glucopyranose) was purchased from Kova-Chitosan (Steinheim, Germany). Silverd® (1% silver sulfadiazine, Deva, Turkey) was provided from a local pharmacy in Eskisehir. All other chemicals and solvents were of analytical grade.

4.2. Preparation of the chitosan gel formulations

During the preformulation studies, gel formulations were prepared with 4 different chitosan concentrations (0.5% [F1], 1.0% [F2], 1.5% [F3] and 2% [F4], w/v). Briefly, chitosan solution was added in acetic acid solution (0.5%, v/v) under a magnetic stirrer at 300 rpm for 4 h. Formulations were kept at room temperature for an overnight in well closed vials for the removal of air bubbles. Formulations prepared were kept at 4 different conditions (25 ± 1°C, 40 ± 1°C, 50 ± 1°C and 40 ± 1°C + 60% Relative Humidity (RH)) for better evaluation of the stability of the chitosan gel during the storage period of 6 months.

EYO was obtained by a traditional method. Fresh egg yolks were heated up to 200 ± 5°C in a frying pan over the fire for 5 min until the oil, began to exude out of residue. The charred residue of the yolks was removed and discarded and only the pure egg oil remained in the cooking vessel. At last residue was filtered and removed from the oil and the oil was stored in well closed containers until being used (Gray 1821). EYO and EGF solution were added to the selected formulation up to the final concentration of 100 μg mL⁻¹ and 10 μg mL⁻¹ (Alemdaroğlu et al. 2006) respectively.

4.3. pH Analyses

pH Values of the formulations prepared were recorded by a WTW Profi Lab pH (pH 507, Weilheim, Germany) at 25 ± 1°C for the formulations kept at different temperatures during the storage period of 6 months. All analyses were repeated in triplicate.

4.4. Rheological analyses

For better evaluation of the stability and spreadability capacity of the gel formulations prepared rheological behaviours of the formulations were determined by a cone plate rheometer (Brookfield RV DV-III+ CP, Middleboro, USA). Briefly, about 0.5 g of the tested formula was applied to the plate and the measurements were carried out at 250 rpm at 25 ± 1°C. Results were recorded only when the torque was within the acceptable range (10-100%).

4.5. Burn wound model

Female Wistar rats (200-250 g) were used for in vivo studies. Animals were obtained from the Ankara University Experimental Animals Research Centre. In vivo study protocol was established with the guidance of Guide for the Care and Use of Laboratory Animals (NIH publication No: 85-23, revised in 1985) and the study protocol was approved by the Local Ethical Committee of Ankara University, Eskişehir, TURKEY (Protocol No: 2011-12/2-11). All animals were housed in separate cages with standard pellet diet and water ad libitum. Rats were randomly divided into six experimental groups (n = 22 each group). The rats were anesthetized by i.p. injection of xylazine hydrochloride (10 mg kg⁻¹ Rompun®, Bayer AG, Leverkusen, Germany) and ketamine hydrochloride (25 mg kg⁻¹ Ketalar®, Parker Davis, Euzechin, Istanbul, Turkey). Dorsal side was shaved with electric clippers followed by numax for the prevention of the difference in the degree of burn due to the presence of hair. Degree of burn was created by using metal stamp (150 mm diameter, 30 g weight) which was heated up to 80 ± 1°C. Hot stamp was applied at the shaved area for 20s without making any pressure. The formulations tested were applied topically twice a day during 21 day of treatment. Contraction of the diameters of the wounded sites were detected by a digital caliper at the 7th, 14th and 21st days. Burn wound...
healing was assessed by the evaluation of changes in wound diameter as well as the histological examinations of the tissue samples of the burned sites (Prym et al. 2002).

4.6. Histological examination

For the histological examinations five animals were euthanatized in each group at the 7th, 14th and 21st days of treatment and the whole skin or wounded sites was cut off and stored in formalin (10%, v/v) until being examined.

Routine histologic methods were processed for the evaluation of the tissue samples (Cuttle et al. 2006). 5 γm cut paraffin sections were stained with haematoxylin and eosin, then samples were examined with an Olympus BX-50 microscope (Hamburg, Germany). Digital images were captured from each selected slide with Olympus Digital SP-BD70 camera (Hamburg, Germany).

The specimens were histologically assessed considering progression of inflammation, granulation tissue formation, collagen organisation and new epithelium formation in the wounded sites. Scores were given by histologists according to a system reported previously to evaluate maturity of wound repair (Hehba et al. 2003).

4.7. Statistical analysis

Statistical analyses of histological data were carried out using SPSS statistical software, version 16.0. for Windows (SPSS Inc., Chicago, IL, USA). All data were tested for normal distribution (Shapiro-Wilks) (Zaiontz 2014) for determining whether the results should be analyzed parametrically or non-parametrically. p < 0.05 was regarded as statistically significant for all statistical analysis. Comparison of histological scoring between different groups was carried out by Kruskal-Wallis Variance Analysis and Mann-Whitney U test with Bonferroni correction.

Wound scar data were evaluated by the statistical analyses of two-way ANOVA followed by Tukey’s multiple comparison tests using GraphPad Prism Version 5.0. Results were expressed in Mean ± SEM. Differences were considered significant when p < 0.05.

Acknowledgements We show our appreciation to the Department of Histology-Embriyology, Osmangazi University School of Medicine. We also thank Dr. Ethar Saheb for evaluation statistical analysis and Hun Çınar for technical assistance. This study was financed by Anadolu University School of Medicine Research Project (Project #00634/2). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

References

