Skip to main content
padlock icon - secure page this page is secure

Open Access Effects of curcumin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats: possible role of CYP3A4 and P-glycoprotein inhibition by curcumin

Download Article:
 Download
(PDF 350 kb)
 
The effects of curcumin, a natural anti-cancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its metabolite, 4-hydroxytamoxifen, were investigated in rats. Tamoxifen and curcumin interact with cytochrom P450 (CYP) enzymes and P-glycoprotein, and the increase in the use of health supplements may result in curcumin being taken concomitantly with tamoxifen as a combination therapy to treat or prevent cancer. A single dose of tamoxifen was administered orally (9 mg · kg−1) with or without curcumin (0.5, 2.5 and 10 mg · kg−1) and intravenously (2 mg · kg−1) with or without curcumin (2.5 and 10 mg · kg−1) to rats. The effects of curcumin on P-glycoprotein (P-gp) and CYP3A4 activity were also evaluated. Curcumin inhibited CYP3A4 activity with 50% inhibition concentration (IC50) values of 2.7 μM. In addition, curcumin significantly (P<0.01 at 10 μM) enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp in a concentration-dependent manner. This result suggested that curcumin significantly inhibited P-gp activity. Compared to the oral control group (given tamoxifen alone), the area under the plasma concentration-time curve (AUC0–∞) and the peak plasma concentration (Cmax) of tamoxifen were significantly (P<0.05 for 2.5 mg · kg−1; P<0.01 for 10 mg · kg−1) increased by 33.1–64.0% and 38.9–70.6%, respectively, by curcumin. Consequently, the absolute bioavailability of tamoxifen in the presence of curcumin (2.5 and 10 mg · kg−1) was 27.2–33.5%, which was significantly enhanced (P<0.05 for 2.5 mg · kg−1; P<0.01 for 10 mg · kg−1) compared to that in the oral control group (20.4%). Moreover, the relative bioavailability of tamoxifen was 1.12- to 1.64-fold greater than that in the control group. Furthermore, concurrent use of curcumin significantly decreased (P<0.05 for 10 mg · kg−1) the metabolite-parent AUC ratio (MR), implying that curcumin may inhibit the CYP-mediated metabolism of tamoxifen to its active metabolite, 4-hydroxytamoxifen. The enhanced bioavailability of tamoxifen by curcumin may be mainly due to inhibition of the CYP3A4-mediated metabolism of tamoxifen in the small intestine and/or in the liver and to inhibition of the P-gp efflux transporter in the small intestine rather than to reduction of renal elimination of tamoxifen, suggesting that curcumin may reduce the first-pass metabolism of tamoxifen in the small intestine and/or in the liver by inhibition of P-gp or CYP3A4 subfamily.

45 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 2012

More about this publication?
  • Pharmazie is a leading journal in the field of pharmaceutical sciences. As a peer-reviewed scientific journal, Pharmazie is regularly indexed in the relevant databases like Web of science, Journal Citation Reports and many others. The journal is open for submissions from the whole spectrum of pharnaceutical sciences including Pharmaceutical Chemistry, Experimental and Clinical Pharmacology, Drug Analysis, Pharmaceutics, Pharmaceutical Biology, Clinical Pharmacy etc.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more