Skip to main content
padlock icon - secure page this page is secure

Open Access Analisis Model Penelusuran Backward Chaining dalam Mendeteksi Tingkat Kecanduan Game pada Anak

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

This article is Open Access under the terms of the Creative Commons CC BY-SA licence.

Game addiction rate can be detected by applying expert system. This study developed a model of game addiction analysis using backward chaining. This model uses six types of game addiction behavior, among others, salience, euphoria, conflict, tolerance, withdrawal, relapse and reinstatement. Someone is said to be addicted to the game if it meets at least three types of game addiction behavior. Testing the validity of the model is done by testing the closeness of the agreement between the model analysis and expert analysis, resulting in a value of 0.78 which means having a strong agreement. Tingkat kecanduan game dapat dideteksi dengan mengaplikasikan sistem pakar. Penelitian ini mengembangkan model analisis tingkat kecanduan game menggunakan backward chaining. Model ini menggunakan enam jenis perilaku kecanduan game antara lain, salience, euphoria, conflict, tolerance, withdrawal, relapse dan reinstatement. Seseorang dikatakan kecanduan game jika memenuhi paling sedikit tiga jenis perilaku kecanduan game. Pengujian validitas model dilakukan dengan menguji keeratan kesepakatan antara analisis model dan analisis pakar, menghasilkan nilai 0,78 yang berarti memiliki keeratan kesepakatan kuat.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Universitas Muria Kudus

Publication date: January 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more