Skip to main content
padlock icon - secure page this page is secure

Open Access Crystal structures of dichloridopalladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(diphenylphosphanyl)quinoline

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

The crystal structures of dichloridopalladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(diphenylphosphanyl)quinoline, (SP-4)-[PdCl2(C21H16NP)], (1) [systematic name: dichlorido(8-diphenylphosphanylquinoline)palladium(II)], (SP-4)-[PtCl2(C21H16NP)]·CH2Cl2, (2) [systematic name: dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate], and (OC-6–32)-[RhCl2(C21H16NP)2]PF6·0.5CH2Cl2·0.5CH3OH, (3) [systematic name: cis-dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate] are reported. In these complexes, the phosphanylquinoline acts as a bidentate ligand, forming a planar asymmetrical five-membered chelate ring. The palladium(II) and platinum(II) complex molecules in (1) and (2), respectively, show a typical square-planar coordination geometry and form a dimeric structure through an intermolecular π–π stacking interaction between the quinolyl rings. The centroid–centroid distances between the stacked six-membered rings in (1) and (2) are 3.633 (2) and 3.644 (2) Å, respectively. The cationic rhodium(III) complex in (3) has a cis(Cl),cis(P),cis(N) (OC-6–32) configuration of the ligands, in which two kinds of intramolecular π–π stacking interactions are observed: between the quinolyl and phenyl rings and between two phenyl rings, the centroid–centroid distances being 3.458 (2) and 3.717 (2) Å, respectively. The PF6− anion in (3) is rotationally disordered, the site occupancies of each F atom being 0.613 (14) and 0.387 (14). The CH2Cl2 and CH3OH solvent molecules are also disordered and equal site occupancies of 0.5 are assumed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Chemistry, Okayama University, Okayama 700-8530, Japan 2: Graduate School of Science and Research Center for Material Science, Nagoya, University, Chikusa, Nagoya 464-8602, Japan

Publication date: January 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more