Skip to main content
padlock icon - secure page this page is secure

Open Access Different reaction of core histones H2A and H2B to the red laser radiation

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

This article is Open Access under the terms of the Creative Commons CC BY-NC licence.

Aim: to investigate the influence of red laser irradiation on the processes of self-assembly of core histones H2A and H2B. Material and Methods. Solutions of human histone proteins were used in the work. Self-assembly was studied by the method of wedge dehydration. Image facies analysis consisted in their qualitative characterization and calculation of quantitative indicators with subsequent statistical processing. Results. It was established that linearly polarized laser light of the red region of the spectrum (A=660 nm, 1 J/cm2) significantly modifies the process of self-assembly of core histone H2B, while the structure of the facies of H2A histone changing to a lesser extent. Conclusion. Red laser radiation influences on the on the processes of self-assembly of core histones H2A and H2B. There is a differential sensitivity of different classes of histones to laser action. Histone proteins used in the experiments are present in the form of aqueous salt solutions. Red light realizes the effect seems to be due to the formation of singlet oxygen by direct laser excitation of molecular oxygen.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Yuri Gagarin State Technical University of Saratov

Publication date: January 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more