Skip to main content
padlock icon - secure page this page is secure

Open Access Gosha-jinki-gan (a Herbal Complex) Corrects Abnormal Insulin Signaling

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

Previous studies have shown that the traditional herbal complex Gosha-jinki-gan (GJG) improves diabetic neuropathy and insulin resistance. The present study was undertaken to elucidate the molecular mechanisms related with the long-term effects of GJG administration on insulin action in vivo and the early steps of insulin signaling in skeletal muscle in streptozotocin (STZ) diabetes. Rats were randomized into five subgroups: (1) saline treated control, (2) GJG treated control, (3) 2-unit insulin + saline treated diabetic, (4) saline + GJG treated diabetic and (5) 2-unit insulin + GJG treated diabetic groups. After seven days of treatment, euglycemic clamp experiment at an insulin infusion rate of 6 mU/kg/min was performed in overnight fasted rats. Despite the 2-unit insulin treatment, the metabolic clearance rates of glucose (MCR, ml/kg/min) in diabetic rats were significantly lower compared with the controls (11.4 ± 1.0 vs 44.1 ± 1.5; P < 0.001), and were significantly improved by insulin combined with GJG or GJG alone (26 ± 3.2 and 24.6 ± 2.2, P < 0.01, respectively). The increased insulin receptor (IR)-β protein content in skeletal muscle of diabetic rats was not affected by insulin combined with GJG administration. However, the decreased insulin receptor substrate-1 (IRS-1) protein content was significantly improved by treatment with GJG. Additionally, the increased tyrosine phosphorylation levels of IR-β and IRS-1 were significantly inhibited in insulin combined with GJG treated diabetes. The present results suggest that the improvement of the impaired insulin sensitivity in STZ-diabetic rats by administration of GJG may be due, at least in part, to correction in the abnormal early steps of insulin signaling in skeletal muscle.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan 2: Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan 3: Department of Visual Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan

Publication date: January 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more