Skip to main content
padlock icon - secure page this page is secure

Open Access The effects of Isoniazid drug adsorption on the structural and electrical properties of pristine and Ni doped (6, 0) zigzag gallium nitride nanotube: By DFT method

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

This article is Open Access under the terms of the Creative Commons CC BY-NC licence.

The aims of this project are to investigate the effects of Isoniazid drug adsorption on the geometrical and electrical structure of pristine and Ni-doped Gallium nitride nanotube (GaNNTs). For this purpose, 24  different configuration models are considered  for adsorbing Isoniazid on the surface of nanotube and then all considered structures are optimized by using density function theory (DFT) at the Cam-B3LYP/6-31G (d) level of theory. By using optimized structures ,the structural parameters involve bond length and bond angle, HOMO and LUMO orbital, Density of state (DOS) plots, Quantum parameters, Natural bonding orbital (NBO), Atom in molecule (AIM), and Molecular electrostatic potential (MEP)  are calculated by above level of theory and all results are analyzed. The results reveal that doping Ni atom and adsorbing Isoniazid molecule decrease the energy gap and global hardness of nanotube and thereby the electrical properties of system increase, this property is suitable to making nano sensors. At all adsorption models the values of adsorption energy is negative and show that the adsorption process is exothermic and stable in thermodynamic approach. On the other hand, the adsorption of Isoniazid on the surface of nanotube is physical adsorption. Comparison the thermodynamic properties demonstrate that the Ni-doped decrease the Isoniazid adsorption on the surface of nanotube therefor the adsorption of Isoniazid on the surface of the Ni-doped models is not favorable than pristine models. In addition, the adsorption of Isoniazid on the surface of nanotube is physical adsorption.   
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Malayer University

Publication date: January 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more