Skip to main content
padlock icon - secure page this page is secure

Open Access Impact of soil-vegetation-atmosphere interactions on the spatial rainfall distribution in the Central Sahel

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

This article is Open Access under the terms of the Creative Commons CC BY-NC licence.

In a Regional Climate Model (RCM) the interactions between the land surface and the atmosphere are described by a Soil-Vegetation-Atmosphere-Transfer Model (SVAT). In the presented study two SVATs of different complexity (TERRA-ML and VEG3D) are coupled to the RCM COSMO-CLM (CCLM) to investigate the impact of different representations of soil-vegetation-atmosphere interactions on the West African Monsoon (WAM) system. In contrast to TERRA-ML, VEG3D comprises a more detailed description of the land-atmosphere coupling by including a vegetation layer in its structural design, changing the treatment of radiation and turbulent fluxes. With these two different model systems (CCLM-TERRA-ML and CCLM-VEG3D) climate simulations are performed for West Africa and analyzed. The study reveals that the simulated spatial distribution of rainfall in the Sahel region is substantially affected by the chosen SVAT. Compared to CCLM-TERRA-ML, the application of CCLM-VEG3D results in higher near surface temperatures in the Sahel region during the rainy season. This implies a southward expansion of the Saharian heat-low. Consequently, the mean position of the African Easterly Jet (AEJ) is also shifted to the south, leading to a southward displacement of tracks for Mesoscale Convective Systems (MCS), developing in connection with the AEJ. As a result, less precipitation is produced in the Sahel region, increasing the agreement with observations. These analyses indicate that soil-vegetation-atmosphere interactions impact the West African Monsoon system and highlight the benefit of using a more complex SVAT to simulate its dynamics.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more