Skip to main content
padlock icon - secure page this page is secure

Open Access Solubilisation of inorganic phosphates by inoculant strains from tropical legumes

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

Microbial solubilisation of low soluble inorganic phosphates is an important process contributing for the phosphorus available to plants in tropical soils. This study evaluates the ability of inoculant strains for tropical legumes to solubilise inorganic phosphates of low solubility that are found in tropical soils. Seven strains of Leguminosae nodulating bacteria (LNB) were compared with one another and with a non-nodulating positive control, Burkholderia cepacia (LMG 1222T). Four of the strains are used as inoculants for cowpeas (Vigna unguiculata) (Bradyrhizobium sp. UFLA 03-84&59; Bradyrhizobium elkani INPA 03-11B and Bradyrhizobium japonicum BR3267) or for common beans (Phaseolus vulgaris) (Rhizobium tropici CIAT 899T). Rhizobium etli UFLA 02-100 and Rhizobium leguminosarum 316C10a are also efficient nodulators of beans and Cupriavidus taiwanensis LMG 19424T nodulates on Mimosa pudica. Two experiments, with solid and liquid media, were performed to determine whether the strains were able to solubilise CaHPO4, Al(H2PO4)3 or FePO4.2H2O. On solid GELP medium none of the strains dissolved FePO4.2H2O, but LMG 1222, UFLA 03-84 and CIAT 899 solubilised CaHPO4 particularly well. These strains, along with LMG 19424 and BR 3267, were also able to increase the solubility of Al(H2PO4)3. In liquid GELP medium, LMG 1222 solubilised all phosphate sources, but no legume nodulating strain could increase the solubility of Al(H2PO4)3. The strains CIAT 899 and UFLA 02-100 were the only legume nodulating bacteria able to solubilise the other phosphate sources in liquid media, dissolving both CaHPO4 and FePO4.2H2O. There was a negative correlation between the pH of the culture medium and the concentration of soluble phosphate when the phosphorus source was CaHPO4 or FePO4.2H2O. The contribution of these strains to increasing the phosphorus nutrition of legumes and non-legume plant species should be investigated further by in vivo experiments.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more