Skip to main content
padlock icon - secure page this page is secure

Open Access Determination of a point sufficiently close to the asymptote in nonlinear growth functions Determinação de um ponto suficientemente próximo à assíntota em funções de crescimento não lineares

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

This article is Open Access under the terms of the Creative Commons CC BY licence.

Growth functions with upper horizontal asymptote do not have a maximum point, but we frequently question from which point growth can be considered practically constant, that is, from which point the curve is sufficiently close to its asymptote, so that the difference can be considered non-significant. Several methods have been employed for this purpose, such as one that verifies the significance of the difference between the curve and its asymptote using a t-test, and that of Portz et al. (2000), who used segmented regression. In the present work, we used logistic growth function, which has horizontal asymptote and one inflection point, and applied a new method consisting in the mathematical determination of a point in the curve from which the growth acceleration asymptotically tends to zero. This method showed the advantage to have biological meaning besides leading to a point quite close to those obtained using the beforementioned methods.&60;br&62;Em funções de crescimento que apresentam uma assíntota horizontal superior à curva, frequentemente surge a questão sobre quando se pode considerar o crescimento como praticamente constante, isto é, quando a curva está suficientemente próxima à sua assíntota, de modo que se possa declarar a diferença como sendo não-significativa. Vários métodos têm sido empregados, entre eles o que verifica através do teste t a significância da diferença entre a curva e sua assíntota. O uso de regressão segmentada, como em Portz et al. (2000), também tem esse objetivo, isto é, a determinação de um ponto de início de crescimento praticamente constante. Utilizou-se a função logística de crescimento, a qual possui assíntota horizontal e ponto de inflexão, e aplicou-se um novo método, que consiste na determinação matemática de um ponto da curva a partir do qual a aceleração do crescimento tende assintoticamente a zero. Este método, além de ter um significado biológico, conduz a um ponto bastante próximo aos obtidos pelos métodos anteriormente citados.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more