Skip to main content
padlock icon - secure page this page is secure

Using a Physical Cochlear Model to Predict Masker Phase Effects in Hearing-Impaired Listeners: A Role of Peripheral Compression

Buy Article:

$25.00 + tax (Refund Policy)

It has been shown that masked thresholds for complex tone maskers may depend on the relative phase between the spectral components of said maskers. Since these masker phase effects are less pronounced in hearing-impaired listeners, it indicates a possible role of peripheral compression. In order to study this phenomenon, we used a previously published physical model of the cochlea. We implemented the model into a version of the temporalwindow model and used it to predict masked thresholds in harmonic complex tone maskers. The predicted thresholds were qualitatively similar with behavioral data (reproduced from the literature) of normal-hearing and hearing-impaired listeners: differences between the maximal and minimal masked thresholds decreased with increasing bandwidth of auditory filters (i.e., with increasing loss of peripheral compression). This effect was independent on the duration of the temporal window. In the predicted data, correlations between the maximum masking difference and the bandwidth of the cochlear filters were significant. However in the behavioral data, the correlations were significant but less pronounced. A loss of peripheral compression affects the isointensity responses of the simulated cochlear filters – broadens the response magnitudes and changes the curvature of the response phases. In the cochlear model, the broadening of the cochlear filters did not compensate for the decrease of the maximum masking difference caused by the changed phase curvature. If the relation between the filter bandwidth and compression loss is the same in the cochlear model and in the real cochlea, the less pronounced correlations observed in the behavioral data may indicate changed temporal resolution or other impairment in the auditory system.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2016

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more