Skip to main content
padlock icon - secure page this page is secure

Open Access Discovery of Digenic Mutation, KCNH2 c.1898A > C and JUP c.916dupA, in a Chinese Family with Long QT Syndrome via Whole-Exome Sequencing

Download Article:
 Download
(PDF 10,133.7 kb)
 
Long QT syndrome (LQTS), which is caused by an ion channel–related gene mutation, is a malignant heart disease with a clinical course of a high incidence of ventricular fibrillation and sudden cardiac death in the young. Mutations in KCNH2 (which encodes potassium voltage-gated channel subfamily H member 2) are responsible for LQTS in many patients. Here we report the novel mutation c.1898A > C in KCNH2 in a Chinese family with LQTS through whole-exome sequencing. The c.916dupA mutation in JUP (which encodes junction plakoglobin) is also discovered. Mutations in JUP were found to be associated with arrhythmogenic right ventricular cardiomyopathy. The double mutation in the proband may help explain his severe clinical manifestations, such as sudden cardiac death at an early age. Sequencing for the proband’s family members revealed that the KCNH2 mutation descends from his paternal line, while the mutation in JUP came from his maternal line. The data provided in this study may help expand the spectrum of LQTS-related KCNH2 mutations and add support to the genetic diagnosis and counseling of families affected by malignant arrhythmias.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Long QT syndrome (LQTS); Digenic mutation; KCNH2; JUP

Affiliations: First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China

Appeared or available online: June 24, 2020

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more