Skip to main content
padlock icon - secure page this page is secure

Open Access NET1 Enhances Proliferation and Chemoresistance in Acute Lymphoblastic Leukemia Cells

Download Article:
(HTML 59.2 kb)
(PDF 380.5 kb)
Acute lymphoblastic leukemia (ALL) is the most prevalent of pediatric cancers. Neuroepithelial cell-transforming 1 (NET1) has been associated with malignancy in a number of cancers, but the role of NET1 in ALL development is unclear. In the present study, we investigated the effect of NET1 gene in ALL cell proliferation and chemoresistance. We analyzed GEO microarray data comparing bone marrow expression profiles of pediatric B-cell ALL samples and those of age-matched controls. MTT and colony formation assays were performed to analyze cell proliferation. ELISA assays, Western blot analyses, and TUNEL staining were used to detect chemoresistance. We confirmed that NET1 was targeted by miR-206 using Western blot and luciferase reporter assays. We identified NET1 gene as one of the most significantly elevated genes in pediatric B-ALL. MTT and colony formation assays demonstrated that NET1 overexpression increases B-ALL cell proliferation in Nalm-6 cells. ELISA assays, Western blot analyses, and TUNEL staining showed that NET1 contributes to ALL cell doxorubicin resistance, whereas NET1 inhibition reduces resistance. Using the TargetScan database, we found that several microRNAs (miRNAs) were predicted to target NET1, including microRNA-206 (miR-206), which has been shown to regulate cancer development. To determine whether miR-206 targets NET1 in vitro, we transfected Nalm-6 cells with miR-206 or its inhibitor miR-206-in. Western blot assays showed that miR-206 inhibits NET1 expression and miR-206-in increases NET1 expression. Luciferase assays using wild-type or mutant 3′-untranslated region (3′-UTR) of NET1 confirmed these findings. We ultimately found that miR-206 inhibits B-ALL cell proliferation and chemoresistance induced by NET1. Taken together, our results provide the first evidence that NET1 enhances proliferation and chemoresistance in B-ALL cells and that miR-206 regulates these effects by targeting NET1. This study therefore not only contributes to a greater understanding of the molecular mechanisms underlying B-ALL progression but also opens the possibility for developing curative interventions.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Acute lymphoblastic leukemia (ALL); Chemoresistance; Neuroepithelial cell-transforming 1 (NET1); Proliferation; miR-206

Document Type: Research Article

Affiliations: 1: Department of Hematology, Shenzhen Longhua People’s Hospital, Shenzhen, P.R. China 2: Department of Hematology, Daqing Oilfield General Hospital, Daqing, P.R. China 3: Department of Neurology, Shenzhen Longhua People’s Hospital, Shenzhen, P.R. China

Publication date: August 8, 2019

This article was made available online on April 17, 2019 as a Fast Track article with title: "NET1 enhances proliferation and chemoresistance in Acute Lymphoblastic Leukemia cells".

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.

    From Volume 23, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics is Open Access under the terms of the Creative Commons CC BY-NC-ND license.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more