Skip to main content
padlock icon - secure page this page is secure

Open Access miR-126-5p Restoration Promotes Cell Apoptosis in Cervical Cancer by Targeting Bcl2l2

Download Article:
 Download
(HTML 46 kb)
 
or
 Download
(PDF 975.4 kb)
 
Cervical cancer is one of the most common cancers in females, with a high incidence and mortality around the world. However, the pathogenesis in cervical cancer is not completely known. In the present study, we investigated the role of miR-126-5p and Bcl2l2 in cervical cancer cells. First, miR-126-5p expression was aberrantly downregulated in human cervical cancer tumor tissues in comparison with normal tissues, as evaluated by RT-PCR. Consistently, the levels of miR-126-5p were also significantly reduced in cervical cancer cell lines when compared to normal cervical epithelial cells. Flow cytometric analysis showed that the rate of apoptosis of cervical cancer cells was significantly increased by miR-126-5p overexpression but inhibited by miR-126-5p inhibitor. A similar change pattern was observed in the expression of apoptosis-regulated protein caspase 3 in cervical cancer cells transfected with miR-126-5p mimic or inhibitor. By bioinformatic prediction with online databases and verification using luciferase reporter assay, we then identified that Bcl2l2 is a direct target of miR-126-5p in cervical cancer cells. The expression of Bcl2l2 was strongly downregulated by the miR-126-5p mimic but upregulated by the miR-126-5p inhibitor in cervical cancer cells, and Bcl2l2 expression was significantly increased in human cervical cancer tumor tissues, which was negatively correlated with miR-126-5p levels. Furthermore, we confirmed that the rate of apoptosis was significantly increased by Bcl2l2 silencing in cervical cancer cells, which was not affected by the miR-126-5p inhibitor. In addition, the increased apoptosis of cells by the miR-126-5p mimic was inhibited by Bcl2l2 overexpression. In summary, miR-126-5p plays an inhibitory role in human cervical cancer progression, regulating the apoptosis of cancer cells via directly targeting Bcl2l2. This might provide a potential therapeutic target for cervical cancer.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Apoptosis; Bcl2l2; Caspase 3; Cervical cancer; miR-126-5p

Document Type: Research Article

Affiliations: 1: Department of Gynaecology, Taian City Central Hospital, Taian, P.R. China 2: Department of Reproduction and Genetic, Taian City Central Hospital, Taian, P.R. China

Publication date: 14 April 2017

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more