Skip to main content
padlock icon - secure page this page is secure

Neural Stem Cell-Conditioned Medium Protects Neurons and Promotes Propriospinal Neurons Relay Neural Circuit Reconnection After Spinal Cord Injury

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Human fetal neural stem cells (hNSCs) are used to treat a variety of neurological disorders involving spinal cord injury (SCI). Although their mechanism of action has been attributed to cell substitution, we examined the possibility that NSCs may have neuroprotective activities. The present article studied the action of hNSCs on protecting neurons and promoting corticospinal tract (CST) axon regeneration after SCI. hNSCs were isolated from the cortical tissue of spontaneously aborted human fetuses. The cells were removed from the NSC culture medium to acquire NSCM, thus excluding the effect of cell substitution. Continuous administration of the NSCM after the SCI resulted in extensive growth of the CST in the cervical region and more than tripled the formation of synaptic contacts between CST collaterals and propriospinal interneurons that project from the cervical level of the spinal cord to the lumbar level. NSCM reduced the number of caspase 3-positive apoptotic profiles at 7 days and protected against loss of the neurons 6 weeks after injury. NSCM promoted locomotor recovery with a five-point improvement on the BBB scale in adult rats. Thus, hNSCs help to set up a contour neural circuit via secretory factors, which may be the mechanism for their action in SCI rats. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Neural stem cells (NSCs); Neuron; Spinal cord injury (SCI); Transplantation

Document Type: Research Article

Publication date: 31 December 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more