Skip to main content
padlock icon - secure page this page is secure

mTORC1 inhibitors rapamycin and metformin affect cardiovascular markers differentially in ZDF rats 1

Buy Article:

$36.73 + tax (Refund Policy)

Mammalian target for rapamycin complex 1 (mTORC1) is a common target for the action of immunosuppressant macrolide rapamycin and glucose-lowering metformin. Inhibition of mTORC1 can exert both beneficial and detrimental effects in different pathologies. Here, we investigated the differential effects of rapamycin (1.2 mg/kg per day delivered subcutaneously for 6 weeks) and metformin (300 mg/kg per day delivered orally for 11 weeks) treatments on male Zucker diabetic fatty (ZDF) rats that mimic the cardiorenal pathology of type 2 diabetic patients and progress to insulin insufficiency. Rapamycin and metformin improved proteinuria, and rapamycin also reduced urinary gamma glutamyl transferase (GGT) indicating improvement of tubular health. Metformin reduced food and water intake, and urinary sodium and potassium, whereas rapamycin increased urinary sodium. Metformin reduced plasma alkaline phosphatase, but induced transaminitis as evidenced by significant increases in plasma AST and ALT. Metformin also induced hyperinsulinemia, but did not suppress fasting plasma glucose after ZDF rats reached 17 weeks of age, and worsened lipid profile. Rapamycin also induced mild transaminitis. Additionally, both rapamycin and metformin increased plasma uric acid and creatinine, biomarkers for cardiovascular and renal disease. These observations define how rapamycin and metformin differentially modulate metabolic profiles that regulate cardiorenal pathology in conditions of severe type 2 diabetes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Zucker diabetic fatty rat; cardiorenal pathologies; metformin; metformine; pathologies cardio-rénales; rapamycin; rapamycine; rat Zucker diabétique obèse

Document Type: Research Article

Publication date: January 1, 2017

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more