Skip to main content
padlock icon - secure page this page is secure

Thioredoxins in cardiovascular disease

Buy Article:

$36.73 + tax (Refund Policy)

Key thioredoxin (Trx) system components are nicotinamide adenine dinucleotide phosphate (NADPH), Trx reductase (TrxR), and Trx. TrxR catalyzes disulfide reduction in Trx with NADPH as cofactor. Because Trx is an antioxidant, oxidative stress results in an increase in Trx, which has a reduced disulfide component. If Trx is suppressed, oxidative stress in higher. In contrast a decrease in oxidative stress is associated with low Trx levels. Trx is involved in inflammation, apoptosis, embryogenesis, and cardiovascular disease (CVD). This review focuses on the Trx system in CVD. Abnormal Trx binding occurs in mouse familial combined hyperlipidemia; however, this has not been confirmed in humans. Congestive heart failure is a manifestation of many CVDs, which may be improved by attenuating oxidative stress through the suppression of Trx and decreased reactive oxygen species. Angiotensin II is associated with hypertension and other CVDs, and its receptor blockade results in decreased oxidative stress with reduced Trx levels. Inflammation is a major causative factor of CVDs, and myocarditis as an example, is associated with increased Trx levels. Vascular endothelial dysfunction has an association with CVD. This dysfunction is alleviated by hormone replacement therapy, which involves decreased oxidative stress and Trx levels. Diabetes mellitus has a major association with CVDs; increase in Trx levels may reflect insulin resistance. Identification of Trx system abnormalities may lead to innovative approaches to treat multiple CVDs and other pathologies.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: cardiovascular diseases; dérivés réactifs de l’oxygène; inflammation; maladies cardiovasculaires; oxidative stress; reactive oxygen species; stress oxydatif; thioredoxin; thioredoxin reductase; thiorédoxine; thiorédoxine réductase

Document Type: Research Article

Publication date: January 1, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more