Skip to main content
padlock icon - secure page this page is secure

Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages

Buy Article:

$36.73 + tax (Refund Policy)

It was hypothesized that monocyte treatment with bone morphogenetic protein 7 (BMP7) would significantly enhance monocyte polarization into M2 macrophages as well as increasing the levels of anti-inflammatory cytokines. In a cell culture system using monocytes (human acute monocytic leukemia cell line THP-1), we studied the effects of BMP7 on monocytes polarizing into M2 macrophages. The data demonstrate that THP-1 cells contain a BMP type II receptor (BMPR2), and that its activation is significantly (p < 0.05) increased following treatment with BMP7. Furthermore, there was an increase of M2 macrophages, BMPR2, and anti-inflammatory cytokines interleukin (IL)-10 and IL-1ra compared with the respective controls. Moreover, treatment with BMP7 caused a significant (p < 0.05) decrease in the levels of pro-inflammatory cytokines IL-6, tumour necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), compared with the controls. In conclusion, we suggest for the first time that BMP7 has a unique potential to polarize monocytes into M2 macrophages, required for tissue repair, which will have significant applications for the treatment of atherosclerosis.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: IL-10; atherosclerosis; athérosclérose; macrophages; monocytes

Document Type: Rapid Communication

Publication date: July 4, 2012

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more