Skip to main content
padlock icon - secure page this page is secure

Effects of chronic AICAR administration on the metabolic and contractile phenotypes of rat slow- and fast-twitch skeletal muscles

Buy Article:

$36.73 + tax (Refund Policy)

The present study examined the effects of chronic activation of 5'-AMP-activated protein kinase (AMPK) on the oxidative capacity and myosin heavy chain (MHC) based fibre phenotype of rodent fast- and slow-twitch muscles. Sprague–Dawley rats received daily injections for 4 weeks of the known AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) or vehicle (control). The AICAR group displayed increases in hexokinase-II (HXK-II) activity, expression, and phosphorylation in fast-twitch muscles (P < 0.001) but not in the slow-twitch soleus (SOL). In the AICAR group, citrate synthase (EC and 3-hydroxyacyl-CoA-dehydrogenase (EC were elevated 1.6- and 2.1-fold (P < 0.05), respectively, in fast-twitch medial gastrocnemius (MG), and by 1.2- and 1.4-fold (P < 0.05) in the slower-twitch plantaris (PLANT). No changes were observed in the slow-twitch SOL. In contrast, the activity of glyceraldehyde phosphate dehydrogenase (EC remained unchanged in all muscles. AICAR treatment did not alter the MHC-based fibre type composition in fast- or slow-twitch muscles, as determined by immunohistochemical and electrophoretic analytical methods or by RT–PCR. We conclude that chronic activation of AMPK mimics the metabolic changes associated with chronic exercise training (increased oxidative capacity) in the fast-twitch MG and PLANT, but does not coordinately alter MHC isoform content or mRNA expression.Key words: AMP-activated protein kinase, myosin heavy chain, metabolism, RT–PCR, SDS–PAGE.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2003

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more