Skip to main content
padlock icon - secure page this page is secure

Role of arsenic and its resistance in nature

Buy Article:

$36.22 + tax (Refund Policy)

Contamination of the environment with heavy metals has increased drastically over the last few decades. The heavy metals that are toxic include mercury, cadmium, arsenic, and selenium. Of these heavy metals, arsenic is one of the most important global environmental pollutants and is a persistent bioaccumulative carcinogen. It is a toxic metalloid that exists in two major inorganic forms: arsenate and arsenite. Arsenite disrupts enzymatic functions in cells, while arsenate behaves as a phosphate analog and interferes with phosphate uptake and utilization. Despite its toxicity, arsenic may be actively sequestered in plant and animal tissues. Various microbes interact with this metal and have shown resistance to arsenic exposure, and they appear to possess the ars operon for arsenic resistance consisting of three to five genes, i.e., arsRBC or arsRDABC, organized into a single transcriptional unit; some microbes even use it for respiration. Microbial interactions with metals may have several implications for the environment. Microbes may play a role in cycling of toxic heavy metals and in remediation of metal-contaminated sites. There is a correlation between tolerance to heavy metals and antibiotic resistance, a global problem currently threatening the treatment of infections in plants, animals, and humans. The purpose of this review is to highlight the nature and role of toxic arsenic in bacterial systems and to discuss the various genes responsible for this heavy-metal resistance in nature and the mechanisms to detoxify this element.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ars operon; arsenic; arsenic resistance; arsenic-resistant bacteria; bactéries résistantes à l’arsenic; opéron ars; résistance à l’arsenic

Document Type: Research Article

Publication date: October 21, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more