Skip to main content
padlock icon - secure page this page is secure

Acute exercise induced BDNF-TrkB signalling is intact in the prefrontal cortex of obese, glucose-intolerant male mice

Buy Article:

$36.58 + tax (Refund Policy)

Obesity and glucose intolerance have been directly implicated in the pathology of Alzheimer’s disease. It is thought that diet-induced obesity causes a reduction in neuronal plasticity through a reduction in the neurotrophin: brain-derived neurotrophic factor (BDNF). Previous work has demonstrated that acute exercise in healthy lean animals increases BDNF-TrkB signalling in the brain. However, if this effect is intact in a state of obesity remains unknown. The purpose of this study is to determine the effects of a single bout of exercise on BDNF-TrkB signalling in the prefrontal cortex and hippocampus from obese glucose intolerant mice. Male C57BL/6 mice were fed a low-fat diet (10% kcals from lard) or a high-fat diet (HFD, 60% kcals from lard) for 7 weeks. A subset of HFD mice underwent an acute bout of exercise (treadmill running: 15 m/min, 5% incline, 120 min) followed by a recovery period of 2 h, after which point the prefrontal cortex and hippocampus were collected. The HFD increased body mass and glucose intolerance (p < 0.05). Prefrontal cortex from HFD mice demonstrated lower BDNF protein content, reduced phosphorylation of the BDNF receptor (TrkB), and its downstream effector cAMP response element-binding protein (CREB), as well as PGC-1α and ERα) protein content (p < 0.05). Two hours following the acute exercise bout, TrkB and CREB phosphorylation as well as PGC-1α and ER-α protein content were recovered (p < 0.05). Our findings demonstrate for the first time that an acute bout of exercise can recover BDNF-TrkB signalling in the prefrontal cortex of obese mice.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BDNF; TrkB; cortex préfrontal; exercice physique; exercise; hippocampe; hippocampus; neurotrophin; neurotrophine; obesity; obésité; prefrontal cortex

Document Type: Research Article

Affiliations: Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.

Publication date: January 1, 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more