Skip to main content

The effects of exercise training on γ-butyrobetaine hydroxylase and novel organic cation transporter-2 gene expression in the rat

Buy Article:

$40.00 + tax (Refund Policy)

The concentration of carnitine in plasma is generally increased with exercise training, suggesting that either carnitine biosynthesis is stimulated or renal reabsorption of carnitine is enhanced, or both. Carnitine, an essential cofactor in the oxidation of fatty acids, is released into the plasma following hydroxylation by γ-butyrobetaine hydroxylase (BBH), the final enzyme in the biosynthetic pathway found primarily in the liver. The organic cation transporter (OCTN2), the carnitine transporter found in kidney, is important in the distribution of carnitine by facilitating its renal reabsorption from urine. In this study, we tested the hypothesis that exercise training increases gene and protein expression of BBH and OCTN2, resulting in enhanced plasma carnitine levels. Male Wistar rats were subjected to 2 daily exercise sessions of treadmill running, 5 days per week, for a 10-week period. The concentration of total carnitine in plasma was significantly increased in trained rats compared with sedentary rats. In trained rats, mRNA and protein expression of BBH were increased in liver, whereas only BBH mRNA expression was increased in kidney. Liver of trained rats demonstrated increased mRNA and protein expression of OCTN2 compared with sedentary rats. In kidney of trained rats, however, only an increase in mRNA expression of OCTN2 was observed. Our results suggest that the improved plasma carnitine status in the trained rat is associated with increased carnitine biosynthesis in liver and kidney. The observation that OCTN2 expression was increased in kidney suggests a potential role of the kidney in the reabsorption of carnitine from the urine.

Keywords: BBH; biosynthesis; biosynthèse; carnitine; exercice physique; exercise; organic cation transporter; transporteur de cations organiques

Document Type: Research Article

Affiliations: 1: Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA. 2: Research Centre, Centre Hospitalier de l’Université de Montréal-Hôtel-Dieu, Montréal, QC H2W 1T7, Canada. 3: Laboratory of Cardiovascular Biochemistry, Research Centre, Centre Hospitalier de L’Université de Montréal-Hôtel-Dieu, Montréal, QC H2W 1T7, Canada.

Publication date: 01 December 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content