
THE PROPERTIES OF CLAY MINERALS IN SOIL PARTICLES FROM TWO ULTISOLS, CHINA
Soil aggregates consist of sand, silt, and clay size particles. Many of the clay size particles in soils are clay minerals, which actively influence soil behavior. The properties of clay minerals may change significantly as soil particle size decreases to the nanoscale; however, little
information is available about these properties for the Ultisols in China. In the present study, the clay mineral components and structural characteristics of four particle-size fractions (i.e., <2000, 450–2000, 100–450, and 25–100 nm) of two Ultisol samples (Ult-1
and Ult-2) were investigated using elemental analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermal analysis. The molar SiO2 to Al2O3 ratios were lower in the nanoscale particle-size fraction (25–100 nm) than in the 450–2000
and <2000 nm fractions. This indicates greater desilicification and allitization of the smaller Ultisol particles. Furthermore, the Fe oxide and Al oxide contents increased and reached a maximum level in the 25–100 nm fraction of the two Ultisols. Goethite was mainly found in the
100–450 nm and 25–100 nm fractions. The dominant clay minerals in the Ultisol 25–100 nm fraction were kaolinite and illite with a small amount of a hydroxy-interlayered mineral in Ult-1 and gibbsite in Ult-2. The kaolinite crystallinity decreased as particle size decreased.
The low crystallinity of the kaolinite in the A horizon 25–100 nm fraction was attributed to a reduction in the thickness of coherent scattering domains, as well as to decreases in OH groups and the dimensions of octahedral AlO6 sheets. A determination of the chemical and
mineralogic properties of the different size fractions of the Ultisols is important to understand the desilicification and Al and Fe oxide enrichment mechanisms during soil formation. The significance of these results can help to reveal the nanoscale transformations of clay minerals. Analysis
of clay mineral compositions in nanoparticles can provide the additional data needed to understand the adsorption and mobility of nutrients and pollutants.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Keywords: CLAY MINERAL; CRYSTALLINITY; KAOLINITE; MEAN CRYSTAL DIMENSION; NANOPARTICLES; ULTISOL
Document Type: Research Article
Publication date: August 1, 2017
This article was made available online on September 27, 2017 as a Fast Track article with title: "PREPUBLICATION: The properties of clay minearls in soil particles of two ultisols, China".
- The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.
Clays and Clay Minerals is the official publication of The Clay Minerals Society.
The Editor-in-Chief is Professor Joseph W. Stucki [email protected]
- Editorial Board
- Information for Authors
- Membership Information
- Annual Meeting of The Clay Minerals Society
- Ingenta Connect is not responsible for the content or availability of external websites