Skip to main content
padlock icon - secure page this page is secure

STABILITY OF MONTMORILLONITE EDGE FACES STUDIED USING FIRST-PRINCIPLES CALCULATIONS

Notice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The reactivity and stability of the edge faces of swelling clay minerals can be altered by layer charge and the stacking structure; however, these effects are poorly understood due to experimental limitations. The structure and stability of the montmorillonite {110}, {010}, {100}, and {130} edge faces with a layer charge of either y = 0.50 or y = 0.33 (e /Si4O10) were investigated using first-principles calculations based on density functional theory. Stacked- and single-layer models were tested and compared to understand the effect of stacking on the stability of montmorillonite edge faces. Most stacked layers stabilize the edge faces by creating hydrogen bonds between the layers; therefore, the surface energy of the layers in the stacked-layer model is lower than in the single-layer model. This indicates that the estimates of edge face surface energy should consider the swelling conditions. Negative surface energies were calculated for these edge faces in the presence of chemisorbed water molecules. A high layer charge of 0.50 reduced the surface energy relative to that of the low layer charge of 0.33. The isomorphic substitution of Mg for Al increased the stability of interlayer Na ion positions, which were stable in the trigonal ring next to the Mg ions. The lowest surface energies of the {010} and {130} edge faces were characterized by the presence of Mg ions on edge faces, which had a strong cation adsorption site due to the local negative charge of the edges. The coordination numbers of O atoms around cations adsorbed to these edge faces were small in comparison to interlayers without water.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CHEMISORBED WATER MOLECULE; CLAY; DENSITY FUNCTIONAL THEORY; INTERLAYER BONDING ENERGY; ISOMORPHIC SUBSTITUTION; LAYER CHARGE; SINGLE LAYER; SMECTITE; STACKED LAYER; SURFACE ENERGY

Document Type: Research Article

Publication date: August 1, 2017

This article was made available online on July 24, 2017 as a Fast Track article with title: "PREPUBLICATION: Stability of montmorillonite edge faces studied by first-principles calculations".

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more